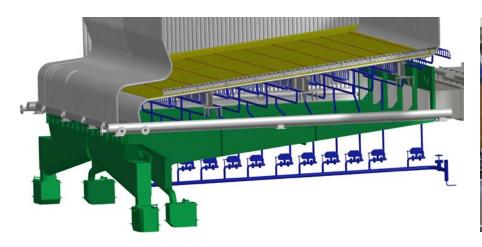


TECNOLOGIA E EFICIENCIA ENERGÉTICA EM CALDEIRAS



GERANDO ENERGIA SUSTENTÁVEL

www.caldema.com.br

COMPARATIVO SISTEMAS DE COMBUSTÃO

PIN HOLE

VIBRATÓRIA

ROTATIVA

LEITO FLUIDIZADO

COMPARATIVO SISTEMAS DE COMBUSTÃO

	GRELHA PIN HOLE	GRELHA ROTATIVA	GRELHA VIBRATÓRIA REFRIGERADA À ÁGUA	LEITO FLUIDIZADO BORBULHANTE
BIOMASSA	SIM	SIM	SIM	SIM
CARVÃO	NÃO	SIM	NÃO	10-40%
CINZAS	< 10%	< 50%	< 10%	< 10%
UMIDADE	10-53%	20-53%	10-53%	30-60%

- A seleção da grelha depende principalmente dos tipos de combustíveis a serem queimados.
- A experiência do Cliente como usuário também tem grande influência na decisão.
 - É possível vários tipos de grelha atenderem os mesmos combustíveis.
 - Custos de operação e manutenção também devem ser considerados.
- Custo de aquisição mais baixo pode camuflar custos maiores de manutenção e operação, além de paradas não previstas.

PERDAS NA EFICIÊNCIA DA CALDEIRA

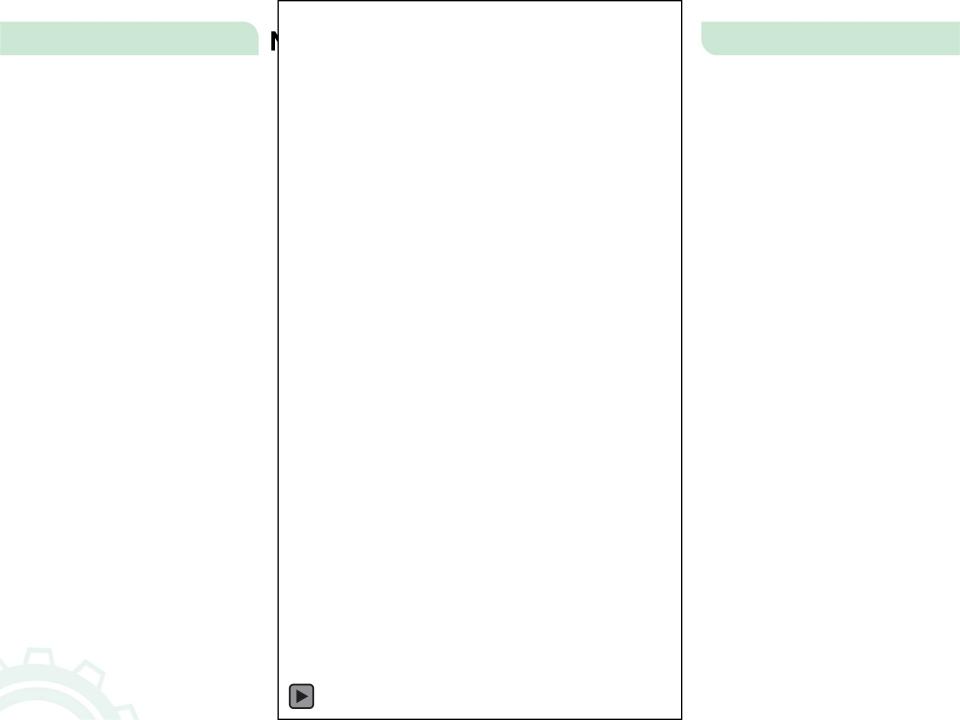
EFICIÊNCIA DA CALDEIRA

Ranking das Perdas

- Perda pela água presente no combustível
- Perda pelo H2 presente no combustível
- Perda pelos gases secos na saída da caldeira
- Perda por combustível não queimado
- Perda por radiação e convecção
- Perda pela umidade no ar
- Perda pela formação de CO
- Perda pela formação de NOx
- Perda de calor nas cinzas

Créditos

- Temperatura de entrada do ar após o ventilador
- Temperatura de entrada do ar após o aquecedor de ar a vapor (fonte externa)
- Temperatura de entrada do combustível


90-95% das Perdas

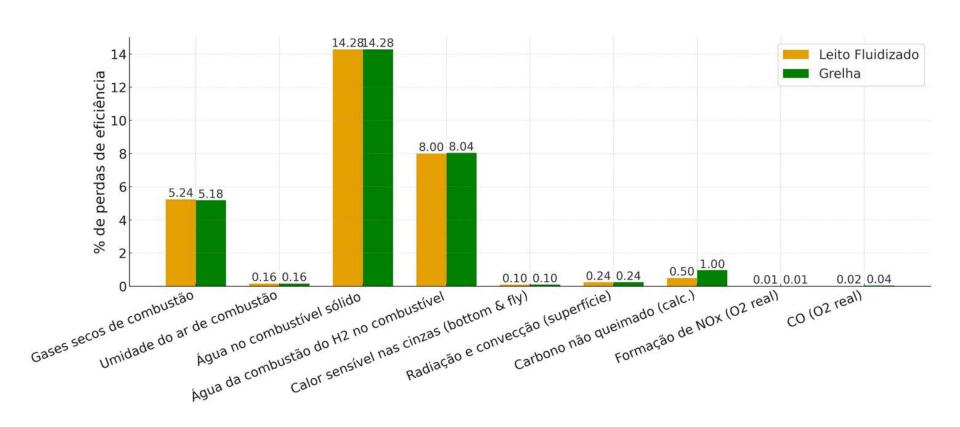
PERDAS NA EFICIÊNCIA DA CALDEIRA

Comparação Geral entre Leito Fluidizado Borbulhante (BFB) e Grelha		
	BFB	Grelha
Emissões de Nox	<150 ppm	> 50 pm
Emissões de CO	<100 ppm	>2 ppm
Eficiência de combustão de resíduos de biomassa em condições normais de operação	> 99,5	/4 a ₹
Excesso de ar médio em operação	20 - 30%	35 - 50%

Fatores que influenciam nos parâmetros atuais

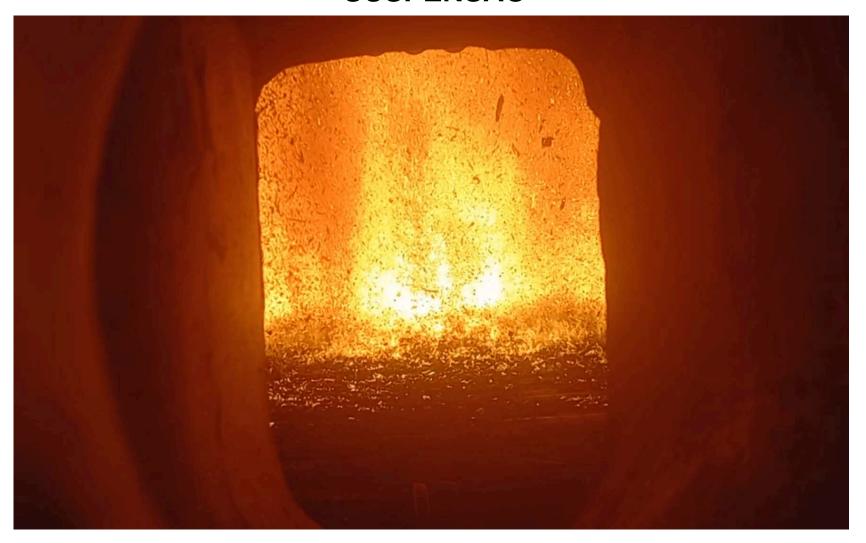
- Ar Secundário
- Ar Primário
- Distribuição do combustível sobre a grelha
- Alimentação constante
- Volume e altura da fornalha
- Área da grelha
- Queima complementar na Pin Hole...

EMISSÕES DE CO E NOX EM CALDEIRAS MODERNAS



VARIÁVEL / HORÁRIO	08:00	08:30	09:00	09:30	10:00	10:30	MÉDIA
Vazão de vapor compensado (t/h)	328	308	293	299	305	306	306.5 t/h
Teor de CO antes do pré-ar (ppm)	56	91	54	37	46	35	53.2 ppm
Teor de NOx nos gases (ppm)	172	167	165	167	177	148	166 ppm

BAZAN - PONTAL - SP 300 t/h - 68,5 kgf/cm² - 525 °C

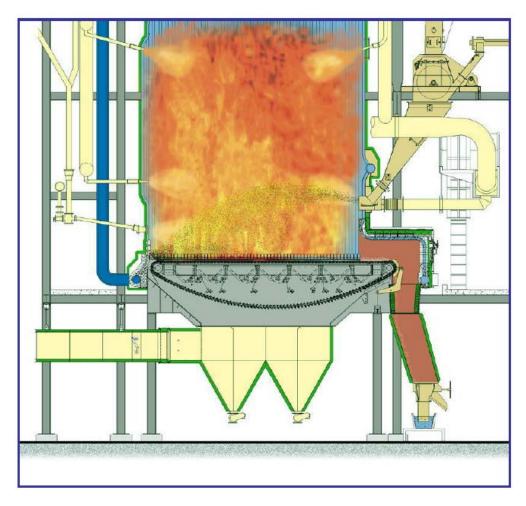

PERDAS NA EFICIÊNCIA DA CALDEIRA

BERNECK - LAGES - SC 188 t/h - 87 kgf/cm² - 530 °C

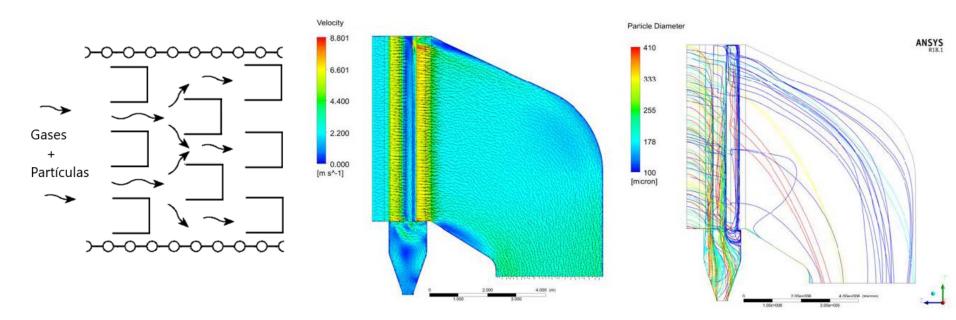
QUEIMA DE BIOMASSA EM SUSPENSÃO

SISTEMA DE ESPARGIMENTO PROVOCA MAIOR PARTE DA QUEIMA DA BIOMASSA EM SUSPENSÃO PROPORÇÃO DE CINZAS QUE SAEM NA GRELHA É BAIXA EM RELAÇÃO AO RESTANTE DA CALDEIRA: 10-30%

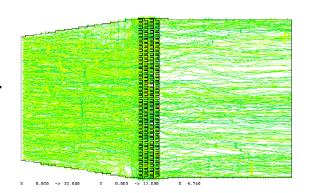
CINZAS FINAS X CINZAS GROSSAS



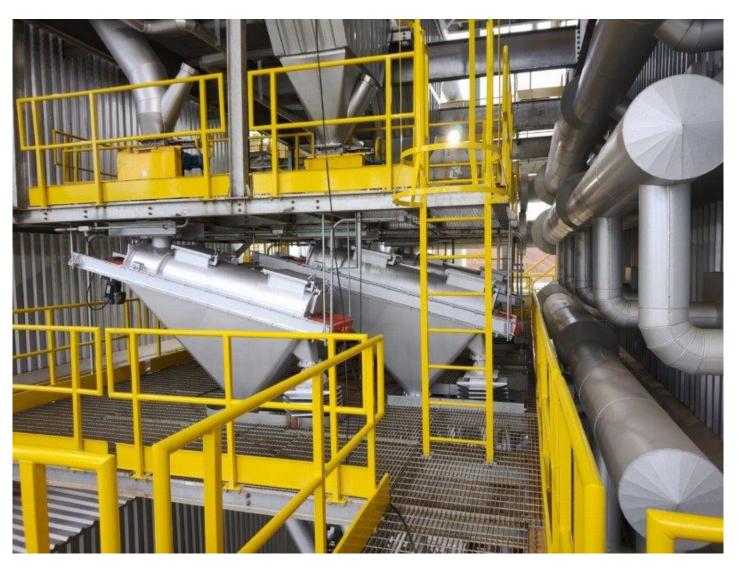
>> Menor volume total >> Maior proporção de areia


>> Maior volume total >> Menor proporção de areia

SISTEMA DE REINJEÇÃO DE NÃO QUEIMADOS


APROVEITA O MAIOR VOLUME DE NÃO QUEIMADOS GERADOS NA SAÍDA FEIXE TUBULAR PARA RETÊ-LOS, CLASSIFICÁ-LOS E REINJETÁ-LOS NA PARTE TRASEIRA DA GRELHA
- PREVISÃO DE AUMENTO DE ATÉ 1% NA EFICIÊNCIA DA CALDEIRA


CSC CALDEMA SAND COLLECTOR


OPERAÇÃO EM CONJUNTO COM O SISTEMA DE REINJEÇÃO

- Retorna para a fornalha as partículas com maior granulometria.
- Aumenta a vida útil do pré-aquecedor de ar e do economizador por remover a maior parte da areia do fluxo de gases.
- Perda de carga baixa: 10-15 mmca

SISTEMA DE PENEIRAMENTO

SEPARAÇÃO DE AREIA X NÃO QUEIMADOS QUE SERÃO REINJETADOS NA FORNALHA

BIOMASSA X CINZAS DA GRELHA

	Teste de Performance Média BIOMASSA	Unidade
Carbono	51,20	%
Hidrogênio	6,13	%
Nitrogênio	0,30	%
Oxigênio	40,37	%
Umidade	39,3	%
Cinzas	2,00	%
PCS, base seca	4.678	kcal/kg
PCS, conforme recebido	2.845	kcal/kg
PCI, conforme recebido	2.421	kcal/kg

	Teste de Performance	
	Cinzas Grossas	
Carbono	8,18	
Hidrogênio	0,10	
Nitrogênio	0,01	
Oxigênio	10,85	
Enxofre	0,01	
Cinzas	80,85	
PCS, base seca	889	

%PERDA POR CARBONO NÃO QUEIMADO

(PTC 4.0 – "Unburned Combustibles in Refuse")

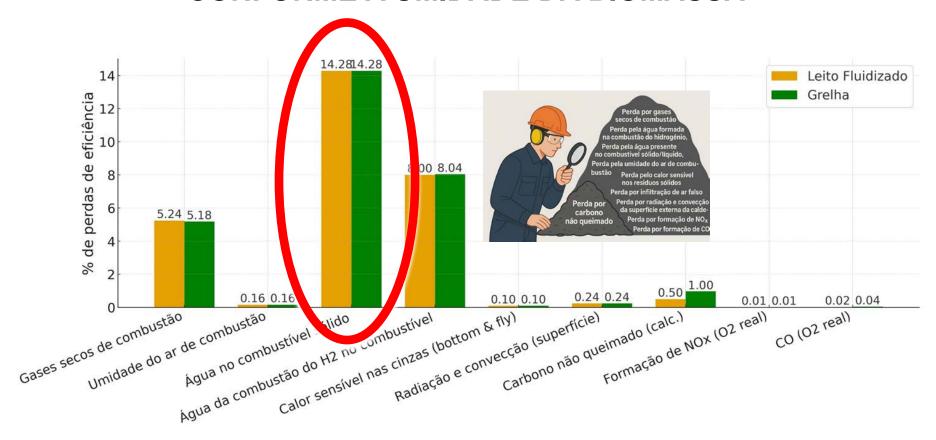
Dados (base seca)

- Combustível: C = 51,20%; Cinzas = 2,00%; PCS_comb = 4678 kcal/kg
- Cinzas (resíduos): C = 8,18%; Cinzas = 80,85%; PCS_resíduo = 889 kcal/kg
- 1. Massa de resíduo por kg de combustível seco

$$m_{res} = \frac{{
m cinzas\ no\ combustivel}}{{
m fração\ de\ cinzas\ no\ resíduo}} = \frac{0.02}{0.8085} = 0.024737\ {
m kg\ resíduo/kg\ combustível}$$

2. Perda de calor específica (kcal/kg combustível)

$$q_{UC}=m_{res} imes PCS_{residuo}=0.024737 imes 889=21.991~ ext{kcal/kg}$$


3. % de perda referente ao PCS do combustível

$$\% ext{ perda} = rac{q_{UC}}{PCS_{comb}} imes 100 = rac{21,991}{4678} imes 100 = \mathbf{0.470\%}$$

EMISSÕES E PERDAS PARA CALDEIRAS QUEIMANDO CAVACOS

	Dados médios medidos em campo	Unidade
Vazão de vapor compensada	192.000	kg/h
Teor de monóxido de carbono nos gases (CO)	137	ppm
Teor de NOx nos gases	199	ppm
Perda média por carbono não queimado previsto sem reinjeção	2,00-2,50	%
Perda média por carbono não queimado previsto com reinjeção	< 1,00	%

VARIAÇÃO NO CONSUMO CONFORME A UMIDADE DA BIOMASSA

	Leito Fluidizado –	Grelha – 45% de
	60% de Umidade	Umidade
Eficiência ao PCI	89,30%	88,80%
Consumo de Biomassa	99.289 kg/h	65.346 kg/h (-34%)

EXEMPLO COMPARATIVO GRELHA X BFB

CALDEIRA 82 t/h / 67 bar / 520 °C / UMIDADE 47,7%	GRELHA	BFB
CONSUMO DE COMBUSTÍVEL – CAVACO DE MADEIRA	33.272kg/h	32.176 kg/h (3,3% redução)
CONSUMO DE POTÊNCIA	963 kW	1.410 kW (+46,4%)
CONSUMO ADICIONAL ENERGIA	-	447 kW
CONSUMO ESPECIFICO TURBINA CONDENSAÇÃO	-	6 kgv/kW
CONSUMO ADICIONAL DE VAPOR	-	2.670 kg/h
GERAÇÃO DE VAPOR ESPECÍFICA CALDEIRA	2,46 kgv/kg biomassa	2,55 kgv/kg biomassa
CONSUMO COMBUSTÍVEL ADICIONAL	-	1.047 kg/h
CONSUMO DE COMBUSTIVEL TOTAL	33.272 kg/h	32.223 kg/h (0,14% redução)